Parameter estimation and model selection for mixtures of truncated exponentials

نویسندگان

  • Helge Langseth
  • Thomas D. Nielsen
  • Rafael Rumí
  • Antonio Salmerón
چکیده

Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting to find the parameter estimates that maximize the likelihood, there is no principled way of performing subsequent model selection using those parameter estimates. In this paper we describe an estimation method that directly aims at learning the parameters of an MTE potential following a maximum likelihood approach. Empirical results demonstrate that the proposed method yields significantly better likelihood results than existing regression-based methods. We also show how model selection, which in the case of univariate MTEs amounts to partitioning the domain and selecting the number of exponential terms, can be performed using the BIC-score.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Mixtures of Truncated Exponentials

Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains. On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

Learning mixtures of polynomials from data using B-spline interpolation

Hybrid Bayesian networks efficiently encode a joint probability distribution over a set of continuous and discrete variables. Several approaches have been recently proposed for working with hybrid Bayesian networks, e.g., mixtures of truncated basis functions, mixtures of truncated exponentials or mixtures of polynomials (MoPs). We present a method for learning MoP approximations of probability...

متن کامل

Truncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space

 Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...

متن کامل

Admissible Estimators of ?r in the Gamma Distribution with Truncated Parameter Space

In this paper, we consider admissible estimation of the parameter ?r in the gamma distribution with truncated parameter space under entropy loss function. We obtain the classes of admissible estimators. The result can be applied to estimation of parameters in the normal, lognormal, pareto, generalized gamma, generalized Laplace and other distributions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2010